Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Comput Biol Med ; 146: 105660, 2022 07.
Article in English | MEDLINE | ID: covidwho-1894904

ABSTRACT

Homologous to E6AP carboxyl-terminus (HECT)-type E3 ligase performs ubiquitin (Ub)-proteasomal protein degradation via forming a complex with E2∼Ub. Enveloped viruses including SARS-CoV-2 escape from the infected cells by harnessing the E-class vacuolar protein-sorting (ESCRT) machinery and mimic the cellular system through PPAY motif-based linking to HECT Ub ligase activity. In the present study, we have characterized the binding pattern of E2UbcH5B to HECT domains of NEDD4L, WWP1, WWP2, HECW1, and HECW2 through in silico analysis to isolate the E2UbcH5B-specific peptide inhibitors that may target SARS-CoV-2 viral egression. Molecular dynamics analysis revealed more opening of E2UbcH5B-binding pocket upon binding to HECTNEDD4L, HECTWWP1, HECTWWP2, HECTHECW1, and HECTHECW2. We observed similar binding pattern for E2UbcH5B and mentioned HECT domains as previously reported for HECTNEDD4L where Trp762, Trp709, and Trp657 residues of HECTNEDD4L, HECTWWP1, and HECTWWP2 are involved in making contacts with Ser94 residue of E2UbcH5B. Similarly, corresponding to HECTNEDD4L Tyr756 residue, HECTWWP1, HECTWWP2, HECTHECW1, and HECTHECW2-specific Phe703, Phe651, Phe1387, and Phe1353 residues execute interaction with E2UbcH5B. Our analysis suggests that corresponding to Cys942 of HECTNEDD4L, Cys890, Cys838, Cys1574, and Cys1540 residues of HECTWWP1, HECTWWP2, HECTHECW1, and HECTHECW2, respectively are involved in E2-to-E3 Ub transfer. Furthermore, MM-PBSA free energy calculations revealed favorable energy values for E2UbcH5B-HECT complexes along with the individual residue contributions. Subsequently, two E2UbcH5B-derived peptides (His55-Phe69 and Asn81-Ala96) were tested for their binding abilities against HECT domains of NEDD4L, WWP1, WWP2, HECW1, and HECW2. Their binding was validated through substitution of Phe62, Pro65, Ile84, and Cys85 residues into Ala, which revealed an impaired binding, suggesting that the proposed peptide ligands may selectively target E2-HECT binding and Ub-transfer. Collectively, we propose that peptide-driven blocking of E2-to-HECT Ub loading may limit SARS-CoV-2 egression and spread in the host cells.


Subject(s)
COVID-19 , Ubiquitin , Binding Sites , Endosomal Sorting Complexes Required for Transport/metabolism , Humans , Ligands , Nerve Tissue Proteins , Peptides/metabolism , Protein Binding , SARS-CoV-2 , Ubiquitin/chemistry , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/chemistry
2.
Cell Death Dis ; 12(4): 310, 2021 03 24.
Article in English | MEDLINE | ID: covidwho-1149708

ABSTRACT

SARS-CoV-2 is responsible for the ongoing world-wide pandemic which has already taken more than two million lives. Effective treatments are urgently needed. The enzymatic activity of the HECT-E3 ligase family members has been implicated in the cell egression phase of deadly RNA viruses such as Ebola through direct interaction of its VP40 Protein. Here we report that HECT-E3 ligase family members such as NEDD4 and WWP1 interact with and ubiquitylate the SARS-CoV-2 Spike protein. Furthermore, we find that HECT family members are overexpressed in primary samples derived from COVID-19 infected patients and COVID-19 mouse models. Importantly, rare germline activating variants in the NEDD4 and WWP1 genes are associated with severe COVID-19 cases. Critically, I3C, a natural NEDD4 and WWP1 inhibitor from Brassicaceae, displays potent antiviral effects and inhibits viral egression. In conclusion, we identify the HECT family members of E3 ligases as likely novel biomarkers for COVID-19, as well as new potential targets of therapeutic strategy easily testable in clinical trials in view of the established well-tolerated nature of the Brassicaceae natural compounds.


Subject(s)
COVID-19 Drug Treatment , COVID-19/enzymology , Ubiquitin-Protein Ligases/antagonists & inhibitors , Ubiquitin-Protein Ligases/metabolism , Adult , Aged , Animals , Antiviral Agents/pharmacology , COVID-19/genetics , COVID-19/metabolism , Chlorocebus aethiops , Endosomal Sorting Complexes Required for Transport/metabolism , Female , Humans , Indoles/pharmacology , Male , Mice , Mice, Inbred BALB C , Middle Aged , Nedd4 Ubiquitin Protein Ligases/genetics , Nedd4 Ubiquitin Protein Ligases/metabolism , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitination , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL